

II Semester M.Sc. Examination, June 2015 (CBCS) CHEMISTRY C204 : Spectroscopy – I

Time : 3 Hours

Instruction: Answer Question No. 1 and any five of the remaining questions.

- 1. Answer any ten of the following :
 - a) A molecule has two mutually perpendicular planes of reflection. What is the axis lying on the line of intersection of the two planes ?
 - b) Identify the point group symmetry of trans- ML_4X_2 . List the complete set of operations of this point group.
 - c) For a diatomic molecule, make a schematic plot of the axial components of the orbital angular momentum vector with l = 2. What are the symbols used to represent the MOs generated by these axial components of \vec{l} ?
 - d) Obtain the possible term symbols for a diatomic molecule having the configuration $(\pi)(\delta)$.
 - e) CO₂ belongs to the point group $D_{\infty h}$ and N₂O has $C_{\infty v}$ symmetry. Explain with reasons, which of these obeys the rule of mutual exclusion in their vibration spectra.
 - f) The energy difference between the first stoke and the first anti-stoke line in the pure rotational Raman spectrum of a diatomic molecule is 24 cm⁻¹. What is the B value ?
 - g) Schematically sketch the bending modes of linear AB_2 molecule. What happens to these modes when AB_2 is bent ?
 - h) Plot schematically the potential energy curve of a diatomic molecule. Compare it with the harmonic potential and indicate the limits where the two do not match.

PG – 360

Max. Marks: 70

(10×2=20)

PG – 360

i) Consider two diatomic molecules X_2 and Y_2 . The equilibrium bond length of X_2^+ is shorter than the equilibrium bond length X_2 . In the other, both Y_2 and

 Y_2^+ have the same equilibrium bond length. What do you conclude about the nature of the HOMO in X_2 and Y_2 ?

- j) Write any one form of an anharmonic potential for a diatomic molecule and explain all the terms.
- k) A symmetric top has the rotational constants A=C=1 ; B=3. On distortion C varies gradually until A=1 and B=C=3. Identify the prolate and oblate limits. What is the nature of the top in the intermediate value A=1, B=2 and C=3?
- A molecule vibrates with a frequency of 1000 cm⁻¹. Express this energy in kJ/mole.
- 2. a) The spacing between the successive lines in the microwave spectrum of CO is 3.84235 cm⁻¹. Obtain the bond length of CO. (h = 6.626×10^{-34} Js; c = 3×10^{10} m s⁻¹; m_H = 1.67×10^{-27} kgs).
 - b) Write the expression for the rotational energy of
 - i) a rigid symmetric top and
 - ii) the non-rigid symmetric top.

Make schematic plots of the microwave spectra of the two by giving the selection rules. (5+5)

- 3. a) The fundamental and first overtone transitions of ¹⁴N¹⁶O appear at 1876.06 cm⁻¹ and 3724.20 cm⁻¹ respectively. Evaluate the equilibrium vibration frequency, the anharmonicity constant and the zero point energy. What is the value of the vibrational quantum number at the dissociation limit ?
 - b) Define the parallel and perpendicular vibrational modes of a polyatomic molecule. Obtain the energies of the vibration-rotation transitions of the perpendicular mode of symmetric top and plot the schematic spectrum. (5+5)
- 4. Consider a molecule with C_{3v} symmetry. Consider the transitions :
 - i) $a_1 \leftrightarrow a_2$
 - ii) $a_1 \leftrightarrow e$
 - iii) $a_2 \leftrightarrow e$ and
 - iv) $e \leftrightarrow e$.

Which of these transitions are allowed when

- a) the dipole moment changes along z and
- b) the dipole changes in the x-y plane?

Given below is the character table for C_{3v} .

	E	2C ₃	$3\sigma_v$	
A_1	1	1	1	Z
A ₂ E	1	1	-1	
Е	2	-1	0	(x, y)

- 5. a) Draw the localized MOs of HCHO and obtain the energy level diagram. Give the electronic configuration of the ground state and three excited states of HCHO.
 - b) Based on the character table of the C_{2v} point group given below, obtain the symmetries of the ground state and three excited states of HCHO and predict the allowed transitions. (5+5)

C _{2v}	E	C ₂	σ_v	σ'_{v} (molecular plane)	
A ₁		1		1	z
A_2	1	1	- 1	- 1	
B ₁	1	-1	1	– 1	x
B ₂	1	-1	-1	1	у

- 6. a) Draw the structures of
 - i) trans-planar H₂O₂,
 - ii) cis-planar H_2O_2 and
 - iii) trans non-planar H_2O_2

In each case determine the point group symmetry and make a complete list of the operations in each of the respective point group.

b) State the great orthogonality theorem and give its applications. (5+5)

10

PG – 360

- 7. a) A diatomic molecule AB and its excited state (AB)* have the same equilibrium bond length. Make a schematic plot of its vibrational coarse structure.
 - b) Draw the MO diagram of H₂. Give the electron configuration of the ground state and first three excited states of singlet H₂ and obtain the corresponding term symbols. (4+6)
- 8. a) Describe the classical theory of Raman effect.
 - b) Explain the origin of O and S branches in the vibration-rotation Raman spectrum of a diatomic molecule. (4+6)

BMSCN